ホーム » 分布 » 二項分布 » 確率母関数の不等式

確率母関数の不等式

不等式P(X \leq r) \leq t^{-r} G_X(t)を可視化して確認します。ここでは二項分布で試してみましょう。

import numpy as np
import matplotlib.pyplot as plt

# パラメータ設定
n = 10  # 二項分布の試行回数
p = 0.5  # 二項分布の成功確率
t_values = [0.001, 0.2, 0.4, 0.6, 0.8, 1]  # t の値のリスト
sample_size = 10000  # サンプル数
r_values = np.arange(0, n+1, 1)  # r の範囲を設定

# 確率母関数 G_X(t) の定義
def G_X(t, n, p):
    return (p * t + (1 - p))**n

# 1. 二項分布から乱数を生成
samples = np.random.binomial(n, p, sample_size)

# 2. r に対する P(X <= r) の推定(左辺)
P_X_leq_r_values = [np.sum(samples <= r) / sample_size for r in r_values]

# サブプロットの作成
fig, axes = plt.subplots(2, 3, figsize=(15, 8))  # 2行3列のサブプロットを作成

# 3. 各 t に対するグラフを描画
for i, t in enumerate(t_values):
    row = i // 3  # 行番号
    col = i % 3   # 列番号

    # 右辺 t^{-r} G_X(t) の計算
    G_X_value = G_X(t, n, p)  # 確率母関数の t 固定
    right_hand_side_values = [G_X_value if t == 1 else t**(-r) * G_X_value for r in r_values]  # t = 1 の場合はべき乗を回避

    # グラフの描画
    ax = axes[row, col]
    ax.plot(r_values, P_X_leq_r_values, label="P(X <= r) (左辺)", color="blue", linestyle="--")
    ax.plot(r_values, right_hand_side_values, label="t^(-r) G_X(t) (右辺)", color="red")
    ax.set_title(f"t = {t}")
    ax.set_xlabel("r")
    ax.set_ylabel("値 (対数スケール)")
    ax.set_yscale('log')  # 縦軸を対数スケールに設定
    ax.legend()
    ax.grid(True, which="both", ls="--")

# サブプロット間のレイアウト調整
plt.tight_layout()
plt.show()

不等式P(X \leq r) \leq t^{-r} G_X(t)が成り立っていることが確認できます。

次に、Xが二項分布B(n,p)に従うとき、aを実数、0<a<pに対し、不等式P(X \leq an) \leq \left( \frac{p}{a} \right)^{an} \left( \frac{1 - p}{1 - a} \right)^{(1 - a)n}が成り立つのか可視化しましょう。

import numpy as np
from scipy.stats import binom
import matplotlib.pyplot as plt

# パラメータ設定
n_values = [10, 30, 50]  # 試行回数 n のリスト
p_values = [0.3, 0.5, 0.7]  # 成功確率 p のリスト
a_values = np.linspace(0.01, 0.99, 50)  # a の範囲

# サブプロットの作成
fig, axes = plt.subplots(3, 3, figsize=(15, 15))  # 3x3のグリッドでグラフを描画

# グラフの描画ループ
for i, n in enumerate(n_values):
    for j, p in enumerate(p_values):
        # 左辺と右辺の値を格納するリスト
        left_side_values = []
        right_side_values = []

        for a in a_values:
            # 左辺:P(X <= an) の計算
            k = int(np.floor(a * n))
            left_side = binom.cdf(k, n, p)
            left_side_values.append(left_side)

            # 右辺の計算
            right_side = (p / a) ** (a * n) * ((1 - p) / (1 - a)) ** ((1 - a) * n)
            right_side_values.append(right_side)

        # グラフの描画(対数スケール)
        ax = axes[i, j]
        ax.plot(a_values, left_side_values, label='左辺 $P(X \leq an)$', color='blue')
        ax.plot(a_values, right_side_values, label='右辺', color='red', linestyle='--')

        # 0 < a < p の範囲に色を塗る
        ax.axvspan(0, p, color='yellow', alpha=0.3, label="0<a<pの範囲")

        ax.set_title(f'n={n}, p={p}')
        ax.set_xlabel('$a$')
        ax.set_ylabel('値 (対数スケール)')
        ax.set_yscale('log')  # 縦軸を対数スケールに設定
        ax.legend()
        ax.grid(True, which="both", ls="--")  # 対数スケールのグリッド

# サブプロット間のレイアウト調整
plt.tight_layout()
plt.show()

不等式P(X \leq an) \leq \left( \frac{p}{a} \right)^{an} \left( \frac{1 - p}{1 - a} \right)^{(1 - a)n}は0<a<pの範囲で成り立っていることが確認できました。